This list includes the list printed on p.xii of the 2008 paperback reprint of the 1997 edition.

For some of the following, the author thanks Martin W. Bunder, John B. Halleck, and Jonathan P. Seldin.

P.3, Def. 1A7(iii). (P,Q) should be (PQ).

P.10, §1D1.1. In fact Church did not completely restrict to λI-terms until Church 1941. His first paper on λ (1932) was based on λK-terms, but with a restriction on their use in conversion.

P.15, §2A7.1. ⊢ should be ↦→ in four places.

P.16, 2nd line above Note 2A8.1. TAλ-deductible should be TAλ-deducible.

P.28, Thm. 2D6 (and p.73 §5C2.2). Diller 1968 only claimed WN not SN. (Although his method would have given SN if he had wanted it.)

P.58, Lemma 4B4. (∀E) should be (∀E) in two places.

P.60. Several occurrences of v and v should be V.

P.74. The correspondence between restricted λ-calculi and subsystems of implicational logic was also noted and studied by Glen Helman in 1977 in Restricted Lambda Abstraction and the Interpretation of Some Non-classical Logics, Ph.D. thesis, Univ. Pittsburgh.

P.97. §7D3(iii), although true, is vacuous since τ has no inhabitants, by §8B5(ii).

P.104, §7D3. L should be Polish L in two places here, and in one place on p.173.

P.106, §7D11(ii). In line 7, a → c should be b → c.

Also the footnote is now out of date: around 2010, 2 independent decision procedures for T→ were found, one by V. Padovani and the other by K. Bimbo and J. M. Dunn together. (Both in process of publication.)

P.106, §7D11(iii). The D-complete axiom-sets mentioned are all finite, and those in the infinite series mentioned are not ever-weakening but mutually independent and weaker than T→.

P.115, §8B1.1. The reference to Definition (iv) should be to Definition 9A5(iv).

P.144. In the 3rd line above Lemma 9B1.1, Q should be Q.

In the 3rd line of Lemma 9B1.1, R should be R.

P.155, §9E5.2. The reference to (iv) should be to 9A5(iv).

P.165, Answer to 7C7.2(i). In the 9th line, the claim τ+ ≡ τ is wrong. In fact τ+ ≡ (a → b) → a → b, and the only identification needed to change τ+ to τ is
So the algorithm first builds a term R_1 whose PT is

$$(a \to f) \to (g \to b) \to ((a \to b) \to c \to d) \to ((f \to g) \to c \to d).$$

It then chooses $N_1 \equiv (\lambda x. R_1 xx) I (I - I)$, and finally $M^* \equiv N_1$.

P.171. In Gallier 1990, dé should be re.

P.174. In Sallé 1978, types should be types en λ-calcul.